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Collaborative Filtering
(Netflix Ratings)
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Bob 3 2 ?
Charlie 5 ? 3

» Massive scale:

* Big data: millions of rows, billions of ratings
» Many other applications:

* News personalization

» Website recommendation



Latent Factors
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Z is the set of training points
I/ is the set of observed ratings



Latent Factors
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Actual Models are Messier
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Complex loss functions: Multivariate factors, bias, time, regularization

H
Avatar The Matrix Up
(2.24,.23)7 (1.92,3.1)T (1.18,.12)T

? 4 2
(4.4) (3.8) (2.3)

3 2 ?
(2.7) (2.3) (1.4)

5 ? 3
(5.2) (4.4) (2.7)

(W @]+ 7]+ @]+ |m@)])

> LW HY =V —p—u(t)—m, () - [W(t)H],]_)Z




Problem Summary
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1. Obtain (approximate) low-rank factorization: V = WH

2. Factors chosen to minimize user-specified loss function
over training points

3. Factorization algorithm must be fully distributed
(data & factors) in a parallel processing system




Approach 1: Gradient Descent
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 Ricardo prototype

* R program runs gradient descent algorithm (L-BFGS-B)

» Hadoop/Jagl computes function and gradient values in parallel
* Problems:

 Factors must fit in memory; Relatively slow convergence



Approach 1.5: Stochastic GD
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» Estimate gradient by scaling up gradient for random training point
« Many “quick and dirty” factor updates
* Problem: Basic algorithm is fully sequential



Approach 2: Distributed SGD
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* Use novel, general “stratified” SGD approach

* Loss = weighted sum of “stratum losses”

o Stratified SGD: move randomly (but carefully!) among strata
* Process each stratum in parallel (interchangeability)



Approach 2: Distributed SGD
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—— * Use novel, general “stratified” SGD approach

-1 * Loss = weighted sum of “stratum losses”

3 o Stratified SGD: move randomly (but carefully!) among strata

* Process each stratum in parallel (interchangeability)
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Advantages
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- Data and factors are fully distributed
» Can handle broad range of loss functions

e Superior convergence properties

» Good scalability



	Techniques for Discovering Relationships in Massive-Scale Data
	Collaborative Filtering�(Netflix Ratings)
	Latent Factors
	Latent Factors
	Actual Models are Messier
	Problem Summary
	Approach 1: Gradient Descent
	Approach 1.5: Stochastic GD
	Approach 2: Distributed SGD
	Approach 2: Distributed SGD
	Advantages

