
Techniques for Discovering 
Relationships in Massive-Scale Data

Rainer Gemulla

Max-Planck-Institut
Saarbücken, Germany

Peter J. Haas
Yannis Sismanis

Erik Nijkamp
IBM Research – Almaden

San Jose, CA



Collaborative Filtering 
(Netflix Ratings)
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• Massive scale:
• Big data: millions of rows, billions of ratings

• Many other applications:
• News personalization
• Website recommendation
• …



Latent Factors
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Latent Factors
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Actual Models are Messier
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Complex loss functions: Multivariate factors, bias, time, regularization



Problem Summary
Avatar
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1. Obtain (approximate) low-rank factorization: V = WH

2. Factors chosen to minimize user-specified loss function 
over training points

3. Factorization algorithm must be fully distributed 
(data & factors) in a parallel processing system



Approach 1: Gradient Descent

• Ricardo prototype
• R program runs gradient descent algorithm (L-BFGS-B)
• Hadoop/Jaql computes function and gradient values in parallel

• Problems:
• Factors must fit in memory;  Relatively slow convergence
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Approach 1.5: Stochastic GD

• Estimate gradient by scaling up gradient for random training point
• Many “quick and dirty” factor updates
• Problem: Basic algorithm is fully sequential
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Approach 2: Distributed SGD

• Use novel, general “stratified” SGD approach
• Loss = weighted sum of “stratum losses”
• Stratified SGD: move randomly (but carefully!) among strata

• Process each stratum in parallel (interchangeability)
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Advantages

• Data and factors are fully distributed
• Can handle broad range of loss functions
• Superior convergence properties
• Good scalability
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